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We investigate scattering effects in open Robertson-Walker cosmologies whose 
spacelike slices are multiply connected hyperbolic manifolds. We work out an 
example in which the 3-space is infinite and has the topology of a solid torus. 
The world-lines in these cosmologies are unstable, and classical probability 
densities evolving under the horospherical geodesic flow show dispersion, as do 
the densities of scalar wave packets. The rate of dispersion depends crucially on 
the expansion factor, and we calculate the time evolution of their widths. We 
find that the cosmic expansion can confine dispersion: The diameter of the 
domain of chaoticity in the 3-manifold provides the natural, time-dependent 
length unit in an infinite, multiply connected universe. In a toroidal 3-space 
manifold this diameter is just the length of the limit cycle. On this scale we find 
that the densities take a finite limit width in the late stage of the expansion. In 
the early stage classical densities and conformally coupled fields approach 
likewise a finite width; nonconformally coupled fields disperse. Self-interference 
occurs if the dispersion on the above scale is sufficiently large, so that the wave 
packet can overlap with itself. Signals can be backscattered through the topol- 
ogy of 3-space, and we calculate their recurrence times. 

1. I N T R O D U C T I O N  

In  this  p a p e r  we deal  wi th  the  topo log ica l  s t ruc tu re  o f  space- t ime,  in  
p a r t i c u l a r  wi th  the  b e a r i n g  o f  the  t o p o l o g y  o n  the  m ic ro scop i c  m o t i o n ,  o n  

the  g loba l  b e h a v i o r  o f  the  wor ld- l ines ,  a n d  o n  the  d y n a m i c s  o f  wave  packets .  
W e  a s s u m e  tha t  the  me t r i c  t enso r  o f  space- t ime  can  local ly  be de- 

scr ibed  by  a R o b e r t s o n - W a l k e r  ( R W )  l ine e lement ,  a n d  tha t  the 3-space is 
inf in i te  a n d  has  nega t ive  cu rva tu re .  
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In Tomaschitz (1993a) we compared in the simply connected topology 
of the Minkowski hyperboloid the dispersion of classical densities that 
arises because of the instability of the flow lines with the dispersion of 
quantum mechanical wave packets. We found asymptotic equivalence of 
the classical and quantum dispersion in regimes where no annihilation/pro- 
duction processes occur. This is an important result, because it shows that 
in these universes the classical instability is well capable of producing the 
same dispersion phenomena as wave fields. 

As was pointed out at length in the preceding papers (Tomasehitz, 
1992a-c), a further peculiarity of open RW cosmologies of negative spatial 
curvature is that the spacelike slices can take a variety of topologies, which 
can even change in time. 

If the 3-space is multiply connected and infinite, it is metrically 
deformable; its metric can vary in time even if its Gaussian curvature stays 
constant, in sharp contrast to the rigidity of the simply connected RW 
cosmologies with S 3, R 3, H 3 as spacelike slices. 

Another striking topological effect is the appearance of regions of 
chaoticity, and of bound-state wave fields localized on them (Tomaschitz, 
1991). 

In this paper we study topological scattering phenomena arising 
because of the multiple connectivity of the 3-space. Properly speaking, if a 
signal is emitted at some time, then a fraction of it may come back at later 
instants from different directions. This backscattering is somewhat reminis- 
cent of the scattering that wave packets undergo in a metric that is rapidly 
varying in time (Schrrdinger, 1939, 1956). 

In Section 2 we study horospherical geodesic flows in a multiply 
connected 3-space manifold. Such a flow consists of bundles of parallel 
geodesics issuing from the boundary at infinity of the 3-space. We study 
probability densities evolving under this flow, and we derive a continuity 
equation for the 4-current density. 

In Section 3 we compare this current with the current of wave fields 
satisfying the Klein-Gordon equation. In the case of the Minkowski 
hyperboloid as 3-space we found (Tomaschitz, 1993a) asymptotic equiva- 
lence of the classical current and the quantum current in regimes where we 
can identify positive- and negative-frequency solutions, for example, when 
the expansion factor is slowly varying. If the 3-space is multiply connected, 
this equivalence can be destroyed by topological scattering and the arising 
self-interference of the wave packet. 

In Section 4 we make some comments on the topologies we have in 
mind, and sketch the simplest example of a hyperbolic 3-manifold that is 
open and multiply connected, namely that of a solid torus. 
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In Section 5 we study topological scattering in RW cosmologies whose 
spacelike slices are solid tori. We will here again recognize the central part 
that the convex hull of the limit set of the covering group plays (Tomas- 
chitz, 1992a). Its projection into the torus gives the limit cycle, a closed 
loop from which particles are spiraling out in infinite cycles. We study the 
scattering and dispersion of horospherical flows in the early and late stages 
of the expansion; in the quantum case we study self-interference. The 
expansion of 3-space provides a mechanism to confine dispersion. In fact, 
if we measure the widths of the densities in units of the circumference of the 
expanding limit cycle, we have the surprising phenomenon that wave 
packets as well as classical densities have finite limit widths. For further 
discussion on that we refer to the conclusion, Section 6. 

2. HOROSPHERICAL FLOWS IN RW COSMOLOGIES: 
THE GENERAL SETTING 

In Tomaschitz (1993a) we introduced the concept of a horospherical 
flow in a simply connected RW cosmology of negative spatial curvature, 
i.e., with Minkowski hyperboloids as spacelike slices. We constructed a 
4-current j r ,  a continuity equation, and an invariant measure. The full 
power of horospherical flows appears in the context of RW cosmologies 
whose spacelike slices are multiply connected hyperbolic 3-manifolds. 

We formulate in this paper the concept of a horospherical flow on a 
multiply connected space-time manifold with the line element 

ds 2 = - c  2 dz 2 + a2(z) da  a (2.1) 

Here da 2 denotes the line element of the open 3-space manifold, which 
we represent as a fundamental polyhedron F in the Poincar6 ball B 3, or in 
the half-space model H 3 of hyperbolic space. The discrete group generated 
by the identifying transformations of the polyhedral faces we denote by F. 
For more details we refer to Tomaschitz (1992a). 

We start with the continuity equation in R(+) x B 3, which projects as 
it stands onto the manifold R (+) x F, because of the invariance of da 2 

under the Lorentz group, of which F is a discrete subgroup: 

1 
x / ~  0x" (x/~J~) = 0 (2.2) 

Similar to the wave equation, we get solutions of (2.2) on the manifold 
R (+) x F by periodizing (method of images) with the covering group F a 
solution j~3 in B 3. In fact we get all solutions in this way. 

Let x ~ = (z, x), xeB  3, and V s S O  +(3, 1), the invariance group of B 3. 
We consider coordinate transformations of the kind z ' =  z, x ' = y - l x ,  
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leaving guY, the metric tensor of (2.1), invariant. The Jacobian Ox'~/Ox ~' we 
denote by [7- Vx]~; restricted to 3-space it is just the Y- rx explicitly given 
in Tomaschitz (1993a). 

Clearly we have the following transformation rules (Landau and 
Lifshitz, 1971): 

j~(x) --[~-Vx]M,(x ) , ~  "' ' [~'x']- l~ = [y- Vx] r (2.3) 

[y' x ' ]~g~(x  ') = [y-rx]~gU~(x) (2.4) 

1 O 
[ --g(x)] 1/20x ~ {[ --g(x)] l/zj"(x) } 

1 
- [_g(x,)]l /z  Ox,~, {[--g(x')]l/2[7"x']-'~ff(Yx') } (2.5) 

We define formally the Poincar6 series 

j~.(x) = (Pr, J r ) '=  ~ [~'x] -l~jV(yx) (2.6) 
7~F 

Or(X, z )=  ~ p(Tx), jr(x, r ) =  ~ [7 'x] - lj(? x) (2.7) 
7~F y~F 

[y'x] is the Jacobian of y in B 3. 
Using the chain rule for Jacobians, we have for g e F  

pr(gX) = pr(X), k (gx)  = [g'x] jr(x) (2.8) 

Applying (2.5), we see that j~ satisfies (2.2) provided ju does. (j~- must be 
absolutely convergent, since there is no natural order of the elements in F.) 

The standard way to estimate the convergence of Poincar6 series in B 3 
is to reduce them to series of the type 

E (1-Ivxl ) zEc (2.9) 

and the convergence behavior of such series is well known (Patterson, 1987; 
Mandouvalos, 1988). The abscissa of convergence is the Hausdorff dimen- 
sion 6 of the limit set A(F) of F, 0 <--6 <2 ,  i.e., (2.9) converges for 
Re(2) > 6. 

In Tomaschitz (1993a) we constructed Gaussian densities evolving 
under a flow of parallel geodesics in B 3 issuing from a point r/at infinity of 
hyperbolic space. The surfaces of constant action are horospheres, namely 
spheres that meet S~ (the boundary of B 3) tangentially at ~/. 

We obtained for the time evolution of a classical density under this 
flow 

a ,7) 1--  :d(log e(x ,  + 
p c ( X ,  ~C, tl) '~ [1 + 2a2f12B2('0] 1/2 exp L ~-~ 2~2f12B2(,r ) j (2.10) 
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Here fl refers to the energy averaging, ct to the spatial width of the initial 
packet, P is the Poisson kernel, P(x, t / )=  ( 1 -  lxr)/Ix-~1 =, .~s~ ,  and 

c f~ 8A 
A(r) = ~ a-l(z)[1 + vyZc-2a2(z)]-1/2 dr, B(z) = ~Vo (2.11) 

o 

where R is the radius of B 3 (Gaussian curvature - l / R 2 ) ;  Vo is connected 
with the expectation value of the energy via E0 = me2[ 1 + c2v2a-2(~)] 1/2. 

With (2.10) we construct the first series in (2.7). We assume at first 
that q is not in the limit set A(F), which is a set of Lebesgue measure zero 
on S~. Then the denominator l yx - t l [  of P is uniformly bounded from 
below for fixed x, 0, and we can estimate 

Pr < const �9 ~ P(y x)2-  ~ log p(~x)tl + a/log p(~x)~2 (2.12) 
7 

with 2=cd/( l+2e2/~2B2) ,  where we have replaced P in (2.10) by 
/~(x) = c o n s t . ( 1 - [ x ] 2 ) .  Comparing (2.12) with (2.9), we see that the 
convergence is excellent, since the exponent converges to infinity. 

In fact, because of the exponential in (2.10) the series Pr even 
converges if q is in the limit set. To see that, we note that because [q] = 1 
we have (1 - Ix]) /2  < e < 2/(1 - [x l )  if Ixl is close to one. The replacement 
f f ~  1/P in (2.12) gives again an exponent convergent to + oo. 

The series for Jr in (2.7) we can estimate on the same footing; for the 
Jacobi determinant [y'x] 3 we use the formula [y'x] = ( 1 -  I~xl=)/(1- Ixl 2) 
and for the logarithmic derivative of the Poisson kernel that appears in the 
particle velocity (j = vp) we use 18 log e/Ox[ = 2/(1 - Ix[2). 

3. HOW TO TRACE THE CLASSICAL CURRENT IN THE 
QUANTUM CURRENT 

The scalar wave equation 

) (7; 0 x .  g '~  ~x--; r - 0 - r  = 0 (3.1) 

in a multiply connected RW cosmology has been discussed in Tomaschitz 
(1991, 1992b). We use the same notation and sign conventions. ~ is the 
coupling to the curvature scalar/~ of (2.1). 

Due to the invariance of g~ under x' = Y - ix [cf. Eq. (2.4)] we obtain 

Or(x) = ~ ~k(yx ) (3.2) 
7eF 
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as a solution of (3.1) on the manifold R (+) x F, provided ~b solves (3.1). We 
assume as in Section 2 the absolute convergence of (3.2); see below. 

The quantum current jrqU on the 4-manifold we define as usual via 

: F-- o j r ,  ] - ~b r (3.3) 

It satisfies the continuity equation (2.2) because 0 r solves (3.1). 
In order to extract the classical current from jqrU, we write (3.3) as 

jrqU = ~ ju# (3.4) 
(~,#)~r x r 

with 

c2 ] 
J~13 = --~t gUV(x) ~b(ax) Ox---- 7 ~b(flx) + (~ ~ t )  -- c.c. (3.5) 

Applying the wave equation, we see immediately that also the image 
currents j ~  in B 3 are conserved, 

1 0 ( ~ - g j ~ a )  = 0 (3.6) 
x / ~  Ox" 

The reordering of terms in moving from (3.3) to (3.4) is allowed because of 
the absolute convergence of (3.2). Because jqr~ in (3.4) remains unchanged 
if we replace j~,# by j~g,gg, g~F,  and because of the invariance of guy, one 
finds again (2.8) satisfied with the jqr~ of (3.3). 

In Tomaschitz (1993a) we constructed Gaussian wave packets by 
averaging over a complete set of solutions of (3.1), 

0 - (2~)1/2~ oo ds ~o(~, s)P l -"~(x, q) exp (s -2~ 2s~ (3.7) 

and by steepest descent, 

1 1 F - ~  2 (log P +f.,)2-] 
~b.~( l+i;2 f~) , /2q~( , , so)P -;~o(x,t/)expL- ~ i ~ 2 ) e ~  J (3.8) 

s denotes the spectral variable, and ~0 = A e  - t f  is a positive frequency 
solution. We assume here that we are in a regime where we can disentangle 
positive and negative frequencies; see the examples (5.13)-(5.15) and 
Tomaschitz (1992c, 1993a). To obtain the wave field on the manifold 
R (+~ x F, we periodize (3.7). We can do this by inserting the asymptotic 
expression (3.8) into equation (3.2), or by periodizing ~ in (3.7) under the 
integral sign, writing 

~k r = 1 I ~ (2r0 i/2e .)_ o~ ds q)(z, s)E(x, t/, 1 - is) exp (s -2e 2s~ (3.9) 
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with the Eisenstein series (Mandouvalos, 1988) 

E(x, n, = E P (rx, (3.10) 

which constitute if ~ = 1 - i s ,  s e R, the generalized eigenfunctions of the 
Laplace-Beltrami operator A on the spacelike sections, 

-AE(x ,  r/, 1 - is) = (1 + s2)E(x, r/, 1 - is) (3.11) 

~/is a degeneration index, ranging on the free faces of F on So~. 
The convergence abscissa of (3.10) is just the Hausdorff dimension 6 

of A(F); see (2.9). For Re(~) > 6 the series in (3.10) converges well, but not 
fast enough to get really accurate results; see, e.g., the determination of the 
abscissa of convergence in Tomaschitz (1992a). If ~ > 1, i.e., if there is a 
bound state, E(x, r/, 1 - is) is still determined by the analytic continuation 
of the series (3.10), but it cannot be constructed explicitly. Therefore it is 
in practice by far preferable to avoid the spectral resolution of A on F, and 
to project B3-wave packets into F by periodizing them via equation (3.2). 
The series in (3.2) is analogous to (2.7), (2.12) and is rapidly convergent 
because of the exponential in (3.8). 

We denote the current of a solution r of (3.1) in B 3 byjq ~, i.e., j~ is 
given by (3.3) with ~k r replaced by r With the r of (3.8) we have 

a-3(.c)P 2 F-~2(log P +f.,)21 
jqO = p q  ~,J(1 4 2 1/2 exp[ 'J (3.12) 

It follows easily from the definition ofj~a in (3.5) that 

diag(jqr~'):= ~ j~(x)  = ~ [y'x]-l~jq(yX) (3.13) 
(~,d,)eF x F ye t  

In Tomaschitz (1993a) it has been shown that in the case of the 
adiabatic variation of the expansion factor a(z), in the late stage of the 
expansion, and, if the wave field is conformally coupled, also at the 
beginning of the expansion, we have 

j~(x) ~j~(x)  (3.14) 

( ~ :  time asymptotics). From (3.13), (3.14), and (2.6) it follows that the 
diagonal part of the quantum current is asymptotically equivalent to the 
classical 4-current, 

diag(jqr,) . , . jr ,  (3.15) 

A wave packet in the simply connected topology of the Minkowski 
hyperboloid B 3 cannot interfere with itself, and (3.14) expresses the equiv- 
alence of the classical and quantum dispersion. 
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However, if the 3-space is multiply connected, as in the examples of 
the next two sections, one has topological scattering, and the scattered 
wave trains interfere. This interference is accounted for in the off-diagonal 
elements of j~, in (3.5), which make the difference from the classical 
current. For further discussion we refer to Section 5. 

4. THE TOPOLOGY OF THREE-SPACE 

Before we discuss the preceding more explicitly for infinite RW 
cosmologies whose space-like sections are solid tori, we make some com- 
ments on the possible topologies of the spacelike slices and the discrete 
groups associated with them. Positively and zero-curved 3-manifolds are 
very exceptional, likewise negatively curved (=hyperbolic) 3-manifolds of 
finite volume. There exist two generic classes of open hyperbolic manifolds, 
which are topologically either hollow or solid handle bodies. The first are 
the product of a sphere with some (at least two) handles attached and a 
finite open interval (thickened Riemann surfaces). The second are the 
product of an open disk with some (at least one) closed disks cut out and 
a finite open interval. 

A solid handle body may be realized in H 3 as follows (Krushkal et al., 
1986). We choose 2n mutually disjoint closed disks in the complex plane 
and identify their boundary circles in pairs with hyperbolic or loxodromic 
M6bius transformations, so that the interior of one circle is mapped onto 
the exterior of the second. 

Now we regard the complex plane as the boundary of the hyperbolic 
half-space H 3, place hemispheres on the circles, and lift (e.g., Beardon, 
1983) the M6bius transformations to H 3. The fundamental polyhedron of 
the handle body is then the space above the hemispheres, the polyhedral 
faces are these hemispheres that are identified in pairs by the lifted 
transformations, and there is also one free face, namely the complex plane 
with the 2n disks removed, which is the boundary surface of the handle 
body, where the hyperbolic metric gets singular. That this polyhedron is 
topologically a solid handle body of genus n is best seen in the B 3 model; 
the hemispheres then get spherical caps on Soo. Pulling them out into the 
exterior of B 3 and gluing them together in pairs, we obtain the topological 
handle body. The covering group F generated by the face-identifying 
transformations gives, if applied to this polyhedron, a tessellation of H 3 
whose accumulation points constitute the limit set (Akaza, 1964). 

The simplest example of an open, topologically nontrivial hyperbolic 
manifold is, as mentioned, a solid torus. Its covering group is cyclic; the 
limit set consists of two points (Ford, 1951): We choose two disjoint disks 
(n = 1) in the complex plane, and identify their boundaries with a hyper- 
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bolic or loxodromic M6bius transformation T that maps the interior of the 
one onto the exterior of the other. The fundamental polyhedron is then 
obtained by placing hemispheres onto the two circles. An isometric copy F 
of this polyhedron we obtain if we conjugate T so that its fixed points are 
0 and oo. The conjugated transformation is z --* Kz (K  is the modulus of T, 
w.l.o.g. ]K t > 1, otherwise we take T-1). This transformation can be lifted 
to H 3 as TK: (z, t) ~ (Kz, ]Kit ). A fundamental polyhedron F for the cyclic 
covering group FK: (z, t) ~ (Knz, ]K[nt), n eZ, generated by TK, is the space 
between the two concentric hemispheres on the base circles [z I = 1 and 
fzl--Igl above the annulus defined by these two circles; see Fig. 1. The two 
fixed points 0 and ~ of TK are the limit points of Fx: Applying FK to /7, 
we get a tiling FK(F) of H 3 with accumulation points 0 and ~ .  

Though the geodesics on a solid torus are unstable and may have very 
complicated shapes, they are never chaotic, even not ergodic, and there do 
not exist bound states and localized wave fields, contrary to the hollow 
handle bodies with quasi-Fuchsian covering groups discussed in Tomas- 
chitz (1991). The continuous spectrum of the wave equation remains the 
same as in the topologically trivial case with the Minkowski hyperboloid as 
3-space (Mandouvalos, 1988). The qualitative behavior of geodesics on the 
manifold can be studied easily, in particular their topology, likewise 
horospherical flows and the topology of horospherical wavefronts. More- 
over, the Poincar6 series defining the currents introduced in Sections 2 and 
3 reduce to Jacobi O-functions and thus admit an analytic treatment of the 
time asymptotics, which is given in the next section. 

Solid handle bodies of genus n -> 2 correspond to the choice of 2n, 
n -> 2, disks in the complex plane, as explained above. The covering group 
generated by the identifying transformations is a Schottky group; its limit 
set is a Cantor set lying in the interior of the disks (Akaza, 1964). Its 
Hausdorff dimension 3 satisfies 0 < 5 < 2, it is always greater than zero for 
n->-2. If  5 is greater than one, then there exists a bound state with a 
localized wave field, and the convex hull of the limit set plays the same part 
with respect to the chaotic trajectories and localized wave fields as in the 
case of quasi-Fuchsian covering groups (Tomaschitz, 1992a). 

Finally we discuss the deformation space, namely the space of noniso- 
metric metrics of equal constant Gaussian curvature - 1/R 2 on the 3-man- 
ifold. Two manifolds are exactly then isometric if their covering groups are 
conjugated (e.g., Bers, 1970; Krushkal et al., 1986). Therefore on the 
Minkowski hyperboloid (F = / d )  there exists only one metric of Gaussian 
curvature - 1 / R  2. The deformation space of a solid torus can be parame- 
terized by K, ]KI > 1, because different moduli generate nonisometric cover- 
ing groups. In Schottky groups, contrary to quasi-Fuchsian groups, there 
do not exist cycle relations among the generating transformations. Thus the 
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deformation space can be parameterized by 3(n - 1) complex parameters, 
for there are n independent generators, each determined by its two fixed 
points and its modulus (Ford, 1951). By an overall conjugation of the 
group we can always move three of the fixed points to, say, 0, 1, ~ .  That 
accounts for 6(n - 1) real dimensions. Clearly F inherits always the Poin- 
car6 metric do "2 = R2t-2(ldzl 2 + at 2) of n 3, but deformations of the polyhe- 
dral faces lead to globally nonisometric manifolds (Bers, 1970). 

5. H O W  IT WORKS IN THE SIMPLEST CASE: 
HOROSPHERICAL FLOWS, CLASSICAL AND QUANTUM 
CURRENTS, TOPOLOGICAL SCATTERING, AND 
SELF-INTERFERENCE 

We study open RW cosmologies with solid tori as spacelike sections. 
We use the H 3 model of hyperbolic space and choose the fundamental 
polyhedron F of the 3-space as in Fig. la; the coveting group is then F~c 
defined in Section 4. The pair (F, F/~) represents topologically a solid torus 
(of. Fig. lb). 

Remark. The modulus K in F~ may be time dependent, varying on a 
path K(z) in the deformation space (cf. Section 4) of the spacelike slices. It 
is in fact a typical feature of multiply connected RW geometries that time 
enters into the metric in two ways, via the expansion factor in (2.1) and 
globally via the choice of a path in the deformation space of the 3-space 
manifold (Tomaschitz, 1993b, 1994). The time dependence can lead to 
interesting effects, such as production/annihilation processes, and to angu- 
lar anisotropy in the temperature of the microwave background (Toma- 
schitz, 1993b). In the following we keep K constant. This deformation space 
is conceptually close to Wheeler's superspace (Wheeler, 1973). However, we 
use it here to describe the variation of the metric in the large (the curvature 
stays constant, apart from a rescaling with the expansion factor), while 
Wheeler, as I understand it, uses it more on a microscopic level, trying to 
grasp topological and metrical quantum fluctuations of space-time. 

In Tomaschitz (1993a) we defined a horospherical bundle of flow lines 
in H 3 as the collection of all geodesics issuing from one and the same point 

on the boundary at infinity C of H 3. Clearly horospherical flows on the 
manifold R (+) • F are then obtained by projecting the flow lines into the 
polyhedron F by means of the canonical covering projection (see Figs. 2 
and 3). 

There are three types of qualitatively different trajectories in F, de- 
pending on whether two (Fig. 2), one (also Fig. 2), or none (Fig. 3a) of the 
endpoints of the coveting trajectory lies in the limit set A(Fr )  = {0, oo}. In 
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Jt Q 

Ro P Rl ~ Lo L I Q Lo 0 

(a) (b) 

Fig. 1. (a) A section through the fundamental polyhedron F of a solid torus in the Poincar6 
half-space n 3. It is bounded by two concentric hemispheres of radius IORo[ = 1 and 
]ORll = IK[ and an annulus of the same radii in the complex plane. The two hemispheres are 
the polyhedral faces that are identified by the transformation T x. The third face in the 
complex plane, namely the annulus, represents the boundary of the torus at infinity of 
hyperbolic space, where the Poincar6 metric gets singular. The hyperbolic volume of F is 
infinite. The arc QP represents a geodesic that connects two points at infinity. The term 
"boundary at infinity" is somewhat metaphoric; neither a particle nor a ray will reach this 
boundary within a finite time, there are no physical boundaries, and the 3-space is open and 
infinite. Likewise, if we speak about a solid toms we mean that in a purely topological sense, 
the product of a finite interval and an annulus. Fundamental polyhedra with face identifica- 
tion allow us to represent infinite spaces in a rather compact way, but at the expense of a 
singular metric induced onto them. If we identify the endpoints of JoJl we obtain a geodesic 
loop. The existence of such loops is a typical physical manifestation of the topology. (b) We 
continuously deform the contour that represents a section through F in (a). The straight lines 
are bent to circular arcs, and vice versa. If we glue together the two ends of the figure by T x, 
we get an annulus, a section through a solid toms (F, TK). Indicated are also the two 
geodesics of (a). 

the first case the projection is a closed loop C(A)\F~, the only one in the 
manifold. It is covered in n 3 by the convex hull C(A) of the limit set, the 
straight line between ~ = 0 and ~ = 0% orthogonal to the complex plane. 

Remark. If the three-space is a manifold of higher connectivity (n 2 2 
in Section 4), with a Schottky or quasi-Fuchsian covering group, then the 
convex hull C(A) is a three-dimensional domain, and likewise its projection 
C(A)\F in F, containing the chaotic trajectories and overwhelmingly fewer 
closed loops. 

In the second case (Figs. 2 and 4b) the trajectories spiral out of (or into) 
C(A)\FK, their limit cycle. In the third case (Figs. 3a and 3b) the trajectory 
starts at the boundary and tends after some looping again toward the 
boundary. Which part of the trajectory is really run through by a geodesi- 
cally moving particle depends on the time parametrization, determined 
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d-= S-4S-31.3S.2 S_ t So Po $1 

Fig. 2. If  we apply the covering group F r  to F we get a tessellation of  H a with concentric 
hemispherical shells, (S.,  Sn + 1), n e Z. If  we identify by Tr. the endpoints o f  the geodesic arc 
JoJ l ,  we obtain the limit cycle C (A) \F  K. Its unique covering trajectory passing through J . ,  
n = - ov . . . . .  + oo, n ( J . J .  + 1) = JoJ1, is the convex hull C(A) of  the limit set which consists 
of  the points J-oo and Jo~. The geodesic arcs P . P . +  1, n = 0 . . . . .  o% accumulate at JoJ l .  
They constitute, if glued together, a trajectory in the manifold F that is spiraling out of  
C ( A ) \ F  K (see also Fig. 4b). It is covered by the H 3 geodesic passing through I . ,  
n = - 3  . . . . .  oo. The canonical covering projection ~(1~I. +1) = P2. + 6P2. + 7 is indicated by 
the dashed rays. K = 3/2. 

apart from the initial conditions by the expansion factor. For example, if 
a(z) ~ A z  for z --* ~ ,  the particle will come to rest well inside the manifold 
(Tomaschitz, 1991). 

The most interesting case arises when the horospherical covering flow 
in H 3 emerges from a point in the limit set, from ~ = 0 or ~ = ~ .  We may 
interchange these two fixed points by a conjugation, and so we choose 

= ~ .  Then the flow lines of the covering flow are the straight lines 
orthogonal to the boundary plane C, and the horospheres of constant 
action are the Euclidean planes orthogonal to them; see Fig. 4. Moreover, 
for ~ = ~ the Ha-Poisson kernel has a particularly simple form, P -- t /R .  
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We use this expression for P in (2.10), construct the first series in (2.7) with 
the covering group FK, and obtain for the classical density on R (+) x F 

F t ~" p , ( ,  ~) 

with 

a-3(z)tZR-Z 1 + ~2~ZB2 -R [1 + 2~Z#ZBZ(z)]i~ exp tog + A(z) "| 2c) 

(5.1) 
4-o0 

O(#, 2).-= ~ exp(--2n 2 + 2n#) (5.2) 
s --OO 

i t  1 e2 logIK I log ~ + A(~) (5.3) 
#c(t, ~):=loglK I 1 4- 2CZ2/~zB2(l:) 

~2 logZlK[ 
2c(T) = - -  (5.4) 1 4- 2~zflZB2(z) 

Using the identity (Whittaker and Watson, 1984) 

O(#, 2) = ~'/22-1/2 exp(#---~) O(--- ffl~ , ~ )  

#, 2eC, Re(2) > 0, - re/2 < arg ,v/2 < re/2 
(5.5) 

S_,~ S-4S-31t S-2 $1 So Pt P14 Sl 

~g. 3a 
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. ! /  ~ xX 
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\ / 

Fig. 3b ~ "-- ~ . . . .  

Fig. 3. (a) Covering trajectories may either be semicircles orthogonal to the boundary of H 3 
(the complex plane) or Euclidean straight lines perpendicular to it. In this figure the covering 
trajectory has no endpoint in the limit set. Its projection ~(I,,I,,+ 1) = P2n - iP2,, n --- 1 . . . . .  7, 
starts at the boundary at infinity and tends again to the boundary after a finite number of 
loops. The circular arcs in F are glued together by the identification of the hemispheres So and 
S1 as depicted in Fig. la (via TK). Initial and endpoints lying on the same dashed line are 
identified in this way; the same is the case in Fig. 2. The three trajectories in Figs. 2 and 3 
exhaust all qualitatively different cases of geodesic motion on a solid torus. (b) The topology 
of the trajectory in (a). The fundamental polyhedron F in (a) is glued to a solid torus, as 
indicated in Figs. la and lb. We indicate the points P~ of (a) that lie on the hemispheres So 
and Sl, which are now glued together: RoL 0 is just So, and RILl corresponds to S 1 (cf. Figs. 
la and lb). The trajectory starts at P1, arrives at P2, P2 and P3 are identified, it moves on to 
/4 ,  P4 and Ps are identified, and so on. If Ira(K) = 0 (K is the modulus of Tr ;  cf. Section 4), 
the trajectory lies in a totally geodesic plane and is self-intersecting. In Fig. 2 and part (a) of 
this figure we assumed that this is the case. The arcs lie in a Euclidean plane orthogonai to the 
boundary of H 3. If K is complex, then the hemispheres S O and S 1 in Fig. 3a are rotated against 
each other before they are pointwise radially identified, and the geodesic arcs are no longer 
assembled in one plane. 

we may write (5.1) as 
x//-~a -3 [-1 +2~:/TEB 2 2A(z)l pr(t,O~ exp L =2 

+oo ( n 2 n 2  2rci#cn" ~ 
• . =  exp- t TF + - V - )  (5.6) 
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From (5.3), (5.4), and (5.6) we have 

#c(IKImt, z) = #c(t, z) - m2c(~), m ~Z (5.7) 

and from that [actually, by definition (2.7)] 

pr~lKlmt z) pr(t, z) (5.8) c~] [ , = 

First we investigate what happens if we confine a particle to a given 
trajectory on the manifold, in particular if we confine it to the limit cycle, 
by choosing the initial coordinates in the directions orthogonal to it with 
infinite precision. This amounts to replacing the Pc in (2.10) by 

ctR 2 
pzo(t, z, z ) " .=-~  pc(t, z)~(z -- Zo) (5.9) 

We use here complex notation, (z, t ) e H  3, and 6(yl + iyz),=6(yl)6(y2); 
~RZ/x/~ is a normalization factor. 

With 6 ( K " z - z  o)= IKI-2"6(z -K-mzo)  we have on the manifold 
R (+) x F 

,~ o~ a-3t  2 [-~2[log(t/R) + A(z)] z]  
p zVo(t, Z, 4~[1+2~2#~B2(~)11/2 exp~ ~ u  A 

+0o 

x Z 6(z-K-%)exp[-'Ln2+2n(uc-l~ (5.10) 
n =  - - o o  

with #c, 2c as in (5.3), (5.4). If Zo = 0, we can replace the series ~ + ~  in 
(5.10) by 6(z)| - log]K[, 2~), with | as in (5.2). 

Applying (5.5) to (5.10), we obtain 

a-3t26(z) +oo [-/727c2 2~i(l~c _ loglKl)n] 
r t z),~ loglK I 2 exP--l-T-+L,~c ~- _] (5.11) p~o=0(, z, 

n =  - - o o  

If  we integrate pro(t, z, z) over the manifold F by means of the hyperbolic 
volume element dyn3 = a3t-3 dyl dy2 dr, we have 

j o~r(t, z, ~) dy.~ = too(t, z, ~) d y ~  = 1 (5.12) 
F 3 

Here we used the invariance of dy~ under F and I n ~ - - 2 , ~ r  I~(F). The 
second integral in (5.12) is calculated in Tomaschitz (1993a). Equation 
(5.12) can also be directly verified for Zo = 0, using term-by-term integra- 
tion with (5.11). 

Let us now discuss the foregoing a little. The r P~o, Zo r  in (5.10) is 
a probability density on the trajectory in Fig. 2 that spirals out of  the limit 
cycle. Along this spiraling trajectory we can study the time asymptotics of 
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the energy and coordinate dispersion. Because the projection of the cover- 
ing trajectory onto the spiraling trajectory is- -contrary to the case Zo---0 
treated below--bijective, the dispersion of p r  o on the spiraling trajectory in 
F is equivalent to the dispersion of Pc. on the covering trajectory, namely 
the straight line through z 0 in n 3, and that has been studied in Tomaschitz 
(1993a) with respect to coordinates and energy. 

For example, if the expansion is linear, a(z) ,-, Az, z ~ oo, we have 

A x  ,,, c la(z ) ,  ve  "~ C 2 Z - - 1  A ~ C3, B ~ '  C 4 (5.13) 

ve is the particle velocity, A , B  are defined in (2.11), and the ci are 
constants. Because B ~ c o n s t  < oo, the packet stays peaked, and the dis- 
persion of the coordinates is then merely due to the expansion of space, 
i.e., proportional to a(z).  Because ve-}0 the particle never reaches the 
boundary, and comes to rest at a finite point on the spiral in Fig. 4b. 

If  we compare that with the static case a(z) = 1, 

A X  ~ Cl'~ 2, Up -~- C2,  A = c37J , B = C47J (5.14) 

we see that the width of the Gaussian goes to infinity in both directions of 
the time evolution. At z = ~ the particle reaches the boundary at infinity 
of the torus; at z = - ~  it rotates on the limit cycle, unlocalizable with 
constant density (compare also the case z o = 0 below). 

Finally, backward in time, a(z)  ~ (Az) ~, 2 > 1, z --*0, we have 

AX "~ cla('c), ve  "" c2, A "~ --C3"1~ 1 - -2 ,  B "~' C 4 (5.15) 

which means that the density stays approximately a Gaussian that spirals 
for z--}0 into the limit cycle. The dispersion Ax goes to zero because 
the length scale decreases. For further discussion on that we refer to 
Section 6. 

Next we treat the case z0 = 0  in (5.10), (5.11), where the particle is 
confined to the limit cycle C(A)\FK. If  the width of the Gaussian in (5.10) 
is small compared to the length of the cycle, 

0~ 2 

1 + 2~2flEB 2 >> l~ (5.16) 

then 2c >> 1 in (5.4), and Pzo=Or is essentially a Gaussian on C(A) \F r .  
In the static case (5.14) we see that this Gaussian peak is washed out 

exponentially fast for z ---} +_ ~ ,  

Pzo=0r = 6(z)[const �9 t 2 "1- O(exp( - cz2))] 

[cf. (5.11)], which means that the probability measure is then proportional 
to dr~t, the hyperbolic line element on the limit cycle, i.e., we have a 
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uniform distribution on C(A)\FK after an exponentially short time. In the 
other two cases (5.13) and (5.15), r P=0=0 approaches a peaked limit 
distribution. 

Before we discuss the density pr  in (5.1) and its quantum mechanical 
counterpart on the manifold ~(+)• F, we make some comments on the 
density (2.10). It is constant on a horosphere, l o g P ( x , t / ) + c  = 0  (t/,c 
fixed), and therefore not yet square-integrable with respect to the volume 
element of B 3. A further Gaussian average over the t/variable has to be 
carried out, which makes it exponentially decaying along the horosphere 
toward the boundary of B 3 (Tomaschitz, 1993a). In (5.1) we preferred to 
periodize the density (2.10) as it stands, because it leads to a particularly 
transparent description of the wave motion, dispersion, and interference on 
the manifold R (+) x F. We emphasize, however, that equations (5.1)-(5.8) 
and later the quantum version (5.18)-(5.22) can easily be generalized to 
t/-averaged densities; equation (5.5) has then to be read as Poisson sum- 
mation. As pointed out in Section 2, the involved series are rapidly 
convergent. 

In Figs. 4 and 5 we depict the situation in the half-space model H 3. 
For the isometry B3,~-~ H 3 and the boundary correspondence ~ / ~  ~, 

/ 
/ / 

b L S..zS-i So bR S~ Sz S~ 

Fig. 4a 
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Fig. 4b 

Fig. 4. (a) We depict here, as in Fig. 2, the tiling of H 3 by concentric hemispherical shells. 
There are two accumulation points of the tiles on the boundary of H 3, namely the common 
center of the hemispheres and the point at infinity, ~ = 0% of the compactified complex plane, 
which are connected by the geodesic C(A) (dashed). All geodesics that appear as Euclidean 
straight lines perpendicular to the complex plane originate in this point at infinity, e.g., C(A) 
or go. They are parallel both in the Euclidean and hyperbolic sense. As in Fig. 2, we indicate 
the projection n(gc) of gc into F via the dashed rays. The Euclidean plane Hc parallel to C is 
a horosphere, touching the boundary of H 3 at r -- oo. For another example of a horosphere 
see Fig. 5a. The projection mechanism of Hc into F is analogous to that of the geodesic go, 
and also indicated by dashed rays. The projection of H c into F consists of annuli parallel to 
C that are orthogonally intersected by n(gc). The n(Hc) is a surface of constant action for the 
flow lines spiraling out of the limit cycle. (b) The topology of the projected horosphere n(Hc) 
of (a). As in Fig. 3b, we glue the polyhedron F in (a) to a torus. The identification of the 
polyhedral faces So and St in (a) also effects that the boundary circles of the annuli lying on 
So and S t are glued together. We symbolize that by the dashed rays in (a) and carry it out 
here: n(H~) spirals toward infinity, partitioning the torus into shells, coded here by pairs 
(n, -n) ,  n = 0 . . . . .  oo. In the same way we code the shells in (a). The dashed spiral and the 
dot-dashed circle are just the n(gc) and the limit cycle C(A)\FK of (a). The hyperbolic 
diameter of these shells approaches a finite value for n ~ ~ .  
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S~ ~ C, see e.g., Beardon (1983). Because Pc in (2.10) is constant on every 
horosphere passing through ~, it follows from (2.8) that pr  is constant on 
the canonical projections of the horospheres in F. If r is not in the limit set 
of F, then these projections are closed, in general self-intersecting surfaces 
of infinite area (Fig. 5b). If r lies in the limit set A(F), then the projection 
of the H 3 horosphere is no longer closed. In Fig. 4a we depict the case 

= oo. The topology of the projected horosphere is indicated in Fig. 4b. It 
is spiraling toward infinity, partitioning the 3-space into toroidal shells 
which accumulate at infinity. In Fig. 4a every such shell is represented by 
the space between two annuli. Clearly the shells are connected through the 
identification of the two polyhedral faces by TK. 

The Euclidean distance of two annuli in Fig. 4a goes to zero if they 
approach C; however, it is easy to see that their hyperbolic distance 
converges to a finite value, namely Ra('c) loglK [, independent of the ordi- 
nate of the H 3 horosphere. Thus the shells close to the boundary have the 
same hyperbolic thickness. In the interior of the manifold the projected 
horosphere intersects orthogonally the limit cycle, whose hyperbolic length 
is again Ra(z) logtK I. If we carry out the t/averaging as discussed earlier, 
then p r would be exponentially decaying along the spiraling horospherical 
projections toward the boundary at infinity. 

pr  is invariant modulo a t-independent factor if we replace in/~c the 
A(z) by A(z) + n loglK I, n ~Z [cf. (5.3), (5.6), and (5.7)]. The time evolution 
of pr  is--apart  from a change of the width--periodic with respect to the 

i / / / .  

//'1 /, 

S.~ S.z 

0 / \ 
\ \  

P6 

S.l S ob~ Io'Po S~ Sa 

Fig. Sa 
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Fig. 5. (a) A horosphere is a Euclidean sphere tangent to the boundary at infimty (~e  
horizon) of I-P. In this figure it originates from a finite point ~ (=Io)  in C, which is 
nevertheless at infinity of H 3. In Fig. 4a, Hc originates from ~ = 0% and is so to say a sphere 
of infinite Euclidean radius. What really distinguishes the horospheres in Fig. 4a and here is 
not so much their Euclidean geometry, but rather that Hc in Fig. 4a originates from a point 
in the limit set of the covering group. The projection of H c into F is coded by 
/ t ( ] n l n  + 1) = "P2nP2n + 1, ~(I6-/ '0) = P I 2 P O ,  i ' / =  0 . . . . .  5 ,  and consists of a finite number (be- 
cause ~ lies outside the limit set) of overlapping spherical segments and caps. The projection 
and gluing procedure follows the usual pattern (cf. Fig. 3a) and is indicated by the dashed 
rays. ~(Hc) is a surface of constant action for the bundle of geodesics (not shown in the figure) 
issuing from ~. It is also a wavefront of elementary waves excited at ~ [cf. (3.10)]. (b) The 
surfaces of constant action of horospherical flows can have quite an intricate topology. 
Depicted is a section through ~(H~) in (a). The representation of the topology is the same as 
in Fig. 4b. The lettering is the same as in (a). The identificatioa of the boundaries of the 
spherical segments and caps in the fundamental polyhedron of (a), symbolized there by the 
dashed rays, is carded out here. The points Pl, PH, P3, P6, Plo, Ps lying on $1 are identified 
in pairs with P2, P12,/'4, Ps, Pg, P7 on So, respectively. Remember and imagine, however, 
that ~(H~) is two-dimensional, a closed self-intersecting surface of infinite hyperbolic area 
(because it touches the boundary at infinity at Po), embedded in the three-dimensional torus; 
cf. the caption of Fig. la. 
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time intervals Az, determined by 

A(z + Az,) - A(z) = n log]K[ (5.17) 

Let us again assume that condition (5.16) holds true so that pr  in (5.1) 
is a Gaussian peaked along some horosphere. In the vicinity of the limit 
cycle this packet rotates in periods determined by (5.17). After n rotations 
its width has changed by a factor 

a(z + A%) [1 + 2~2f12B2(z + Azn)] 1/2 
a(z) [1 + 2a2f12B2(z)] l/: 

The first factor is due to the change of the length scale, the second gives the 
intrinsic broadening of the width. 

Close to the boundary the packet crosses within a period Azi+ 1 - Azi 
the toroidal shells, and is afterward again concentrated on the same 
horosphere, its width having changed as above. 

To treat finally the quantum case, we insert (3.8) into (3.2) and obtain 

~O(Z, So)(t/R) 1 -iso I ~2 (log(t/R) d-f,s) 2-] ,.~, 
"" (1 + iazfs~) '/2 expt_ 2 l-~/7~2fmg s J ~]~q'  )'q) (5.18) 

and for the density in (3.3) we get 

p ,  ,,~ a-3 ( R )  2 [--ct2(l~ + f ' )2-] 
(l "~o~f,ss)4~2 1/2 exp L ~a--~2s~- ' j.l| (5.19) 

with | as in (5.2) and 

~z 2 log21Kt 
2q(Z) = 2 1 + a4f2ss (1 - i~2f,~) (5.20) 

and 

1 flq(/, "c)= ~ l o g [ K [ [ ( 1 - a 2 ( l ~  s ~  J a4fs'(l~ 

(5.21) 

Equations (5.7) and (5.8) hold true with the replacements (5.18)-(5.21). 
With (5.5) we can write (5.18) as 

( ) 2zca-3 1-s2~ 2f.,+2sof,, { 9 -  ql,-~q/i (5.22) 
pq "~ a2 log21Ki exp ct 2 

If we replace the product | in (5.19) by its diagonal part, 

diag(| 2)0(/7, ~)) ,= 0(2 Re(#), 2 Re(2)) 
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[cf. (3.4), (3.13)], we obtain equation (5.1), provided 

f,~ A,  2 2  2 2  2fl B ~ ~ f.ss (5.23) 

which is just the condition for the asymptotic equivalence of Pc [cf. (2.10)] 
and pq [cf. (3.12)] in the covering space. Condition (5.23) holds true, for 
example, in the case of adiabatic expansion, and for the expansion factors 
in (5.13)-(5.15). 

What is now the difference between (5.1) and (5.19)? What do the 
off-diagonal elements in OO effect? First, r r is constant on the horospher- 
ical projections in Figs. 4a and 4b which are the wavefronts of C r in 
~(+) • F. Concerning the q averaging of (3.8), the same holds true as in the 
foregoing classical case: it effects the exponential decay of ~,r along the 
horospherical projections. Analogously to equation (5.17), we have 

fs(z + Az,) - f s ( z )  = n loglKI (5.24) 

Let us now assume as in (5.16) that the width of the Gaussian in (5.19) is 
much smaller than the length of the limit cycle. As long as Re(2q) ~> 1 [cf. 
Section 6) the IO[ 2 in (5.19) is negligible, and there is then no difference from 
the classical case. But whenf2~ increases, so that the width gets comparable 
with Ra(z )  loglKI, then the fringes of the Gaussian in (5.18) start to overlap, 
and | in (5.19) is no longer negligible, since Re(J,q) ~ 1. Because of the 
phases in the off-diagonal elements of |  new interference peaks appear 
in the distribution pqr. Also note that  Re(/g2/j.q) is independent offss, and 
pqr in (5.22) will not approach a uniform distribution on the limit cycle for 
f 2  ~ oo, contrary to the classical case B z ~  0% discussed after (5.16). 

6. CONCLUSION AND OUTLOOK 

There is a natural length scale in universes of multiple spatial connec- 
tivity, provided by the hyperbolic diameter d(C(A)\V) of the convex hull 
of the limit set. In our example in Section 5 we have 

d(C(A)\rK) = a(Og loglK I (6.1) 

which is clearly the length of the limit cycle. This cycle can be very small, 
depending on the choice of K. A wave packet dispersing in the vicinity of 
such a tiny loop can easily start to overlap and interfere with itself. 

The mean wavelength of the packet in (5.18) is 

20 = 2__~ Ra('c) (6.2) 
So 

Its width is 

Z = Ra(z)o~ -1[( 1 + o~4f2ss)] 1/2 (6.3) 
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One may take 0~ = x/~o. If the curvature of 3-space is very small, then So 
must be very large to obtain a moderate 2o, and therefore the averaging 
takes place over a very narrow interval of wavelengths, A2 =s~-1/22o. 
Likewise we can assume ~ log[K[ >> 1 [cf. (6.5)]. 

In the case of linear expansion a(z) ~ Az, we have (Tomaschitz, 1992c) 

f =  mc2~ "r ( 1/42me2z+ s~)h + O(z -3), fm= 0 ~ SO log Az (6.4) 

and with (6.1), (6.3), 

Z o_lg~] I l a4 h2 ] (X) 1 
= c( 1 + 2 m 2 c 4 z  2 ~ O(Z--4) ' d m=0 m loglgl (6.5) 

Thus the packet approaches a finite limit width on the scale of the 
expanding limit cycle (6.1); z /d  is here even decreasing. Whether a packet 
broadens or contracts depends on the choice of the phase of the wave 
function, but the d-scaled limit width is always finite under linear expan- 
sion. The f i n  (6.4) is determined only up to a z-independent constant. We 
have chosenfso  that (5.23) is satisfied with Zo = oo in (2.11). If we choose 
the classical initial distribution at a finite Zo, then we have to add a 
time-independent constant to f to achieve (5.23), and then the width 
broadens. 

Even in the case m = 0, when the wave packet is moving with the 
speed of light, we have a finite limit width relative to the limit cycle. In 
particular there will be no self-interference, in striking contrast to the static 
case a(z) = 1, f = (s 2 + R2m2cE/h 2) 1/2Az, and z /d -~  oo. 

Remark. We study here the dispersion orthogonal to the horospherical 
wavefronts; cf. the comments after (5.16). If we take a square-integrable 
wave packet, it will also disperse along the horospherical projections in F. 
However, this dispersion orthogonal to the direction of propagation will be 
certainly even smaller. 

For the frequencies we have from (6.4) 

mc 2 (S 2 + 1/4)h 1 So 
V = ~Xh + 47cmc 2 z2 F O('6" --4), •m=0 " 27rZ (6.6) 

Finally we discuss the recurrence times of the densities on the limit 
cycle C(A)\FK [cf. (5.24)]. We study this again in the context of packets 
that are infinitely extended orthogonal to their direction of propagation (cf. 
Section 5); in other words, we consider the rotations of the horospherical 
wavefronts. The generic situation, however, is that a square-integrable 
packet is driven away from the limit cycle and starts to spiral toward the 
boundary, like the classical trajectories. It stays confined to the limit cycle, 



376 Tomasehitz 

apart from dispersion, only if the covering packet in H 3 is centered at 
C(A), the convex hull of the limit set. 

Equation (5.24) with the fm=o in (6.4) is solved by AT ,-~ z(IKI- 1). 
The package goes on rotating forever in linearly increasing periods, corre- 
sponding to the increase of the circumference of the limit cycle. If  m # 0 
and z is sufficiently large, then equation (5.24) has no positive As as 
solution; after a finite number of rotations the particle comes to rest. 

In the early stage of the expansion, a(T)~(Az)  ~, z ~ 0 ,  2 > 0  [cf. 
(5.15)], with the phase f given in Tomaschitz (1993a) [cf. Eqs. (5.28), 
(5.36)], we have 

Az ~ l l o g l g  I (so2 + 1 - 6~)1/2(Az)~ (6.7) 
A So 

and the packet is rotating independent of its mass with a frequency 

A(so 2 + 1 - 6~),/2 
v ~ 2re (Av) -~" ~ oo (6.8) 

and a group velocity CSo/(S 2 + 1 - 64) 1/2, ~ < 1/6. 
We have for both massive and massless particles, if ~ # 1/6, 

( x /d )  "~ const �9 z 1 - ~ --, oo (6.9) 

and if ~ = 1/6, 

Z II~ ] 
d ~loglK I 1 + ~ - - ~ - )  ~ - 2 ~ 0 6  ~-O(~ 4(1+2)) (6.10) 

Thus, if the field is not conformaUy coupled, it disperses, and we have 
self-interference, as described in Section 5. In the conformally coupled case 
the packet has again an intrinsic finite limit width, so that it cannot overlap 
with itself on the limit cycle. Analogous considerations concerning disper- 
sion hold true for the classical density (5.1), because of (5.23). 

Clearly it would be interesting to compare the size of the limit cycle to 
atomic length scales. In order to do so we would have to know the point 
in the deformation space [the K in Eq. (6.1)] that determines the metric at 
present. Equations that determine the evolution of the metric in the 
deformation space are still lacking. 

In a generic infinite 3-space of higher connectivity, the convex hull of 
the limit set is a three-dimensional finite domain. Its diameter defines then 
a length scale whose actual size is again determined by the choice of the 
metric in the deformation space of the 3-manifold. The chaoticity of the 
classical trajectories in the convex hull could be an explanation for the 
uniform distribution of galaxies. 
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Finally, topological  self-interference leads to pari ty violation in the 
free Dirac equat ion on a multiply connected R W  background  (Tomaschi tz ,  
1994). A P-reflected wave packet  can cover the limit cycle and overlap with 
itself. This causes self-interference, its n o r m  is not  preserved, and accord- 
ingly P is not  a uni tary symmetry.  The C P T  symmetry  is likewise broken.  
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